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ABSTRACT 

A method of numerically solving the differential equations specifying solute and water 
flow in a multinephron, multisolute model of the mammalian kidney by a combination of 
Newton and continuation techniques is described. This method is used to generate a 
connected component of the steady state solution manifold of the model. A three dimen- 
sional section of this manifold is shown to be convoluted, with upper and lower sheets of 
stable solutions connected by an unstable middle sheet. Two dimensional sections of this 
surface are followed from a trivial constant profile of concentrations in the nonconcentrat- 
ing kidney to the profiles of the maximally concentrating kidney. Study of these sections 
shows that for a given choice of model parameters there may exist no solution, there may be 
a unique solution, or there may be multiple solutions. A study of the time dependent 
solutions shows that the dynamic transition from the lower to the upper state and return 
may be via a hysteresis loop. 

1. INTRODUCTION 

In previous papers and conference reports we have described various 
aspects of a multinephron model of the kidney [15-17,29,30], and we have 
shown that this model as well as simpler prototype models may have multiple 
steady state solutions [l&31]. We have also described our numerical methods 
[13,14,16,18,27,28,33,34] and have compared them with other techniques 
[lo, 13,14,19]. In recent papers other authors have described various aherna- 
tive schemes of solving the differential equations of kidney models 
[2,5,7,10,11,20]. 

In this paper we show how our previously developed Newton methods 
may be combined with a continuation method to arrive at solutions of the 
model equations. The development of this method serves two general pur- 
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poses: First, it permits us to converge to a solution with an initial estimate 
that is far from the final solution. Secondly, it permits the solution of the 
model to be followed as a function of any selected model parameter. To 
illustrate the technique, we construct a two dimensional section of the 
solution manifold in which the solute concentrations are exhibited as a 
function of the ratio of nephrons with short loops of Henle to those with long 
loops of Henle and of the hydraulic permeability of the collecting ducts of 
the short nephrons. In doing so we show how to develop a steady state 
solution for a given choice of parameters starting with the boundary values as 
the initial data. 

2. STATEMENT OF THE MODEL 

Consider a kidney consisting of many nephrons and separated into an 
inner (medullary) and an outer (cortical) region (Figure 1). Each nephron is 
modeled as a separate nephrovascular unit. The model includes two groups 

LONG HENLE S LOOP _ 

FIG. 1. Schematic of a sagittal section of the mammalian kidney showing two nephron 

populations (adapted [22]). 
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of nephrons: those with short loops of Henle that extend to the junction of 
the inner and outer medulla, and those with long loops that extend to the 
papilla. Except for exchange of water and solutes through a common 
interstitium, each type of nephron functions as a separate nephrovascular 
unit (Figure 2). After leaving the glomerulus, each efferent arteriole splits 
into a postglomerular capillary, which exchanges with the cortical inter- 
stitium, and a vas rectum, which exchanges with the medullary and cortical 
interstitium. The vas rectum of each nephron is assumed to penetrate the 
medulla to the same depth as its loop of Henle. Input data for the model are 
the arterial, venous, and bladder hydrostatic pressures, and the concentra- 
tions of various solutes, which in the calculations to be described in this 
paper are salt, urea, and protein. The various flow tubes representing renal 
tubules and capillaries exchange through cortical and medullary interstitia. 
The cortical interstitium is assumed to be a well-stirred bath; the medullary 
interstitium is assumed to behave as a flow tube closed at the papillary end 
and open at the cortical medullary junction. It is assumed to be well stirred in 
cross section, but in the axial direction there is transport by both convective 
flow and diffusion. 

SOLUTE AND WATER MOVEMENT IN THE KIDNEY 

FIG. 2. Schematic of two nephrovascular units. Open arrows indicate transmembrane 

water flux; solid arrows indicate transmembrane salt flux; hatched arrows indicate trans- 

membrane urea flux. In addition to salt and urea concentration, hydrostatic pressure, 

concentration of unfiltered proteins, and concentration of a third (possibly impermeant) 

filtrate are computed. 



282 RAYMOND MElIA AND JOHN L. STEPHENSON 

The differential equations that describe solute and water movement in the 
i th tubular segment [23-25,27,28] are 

acik 
CikF;u- Dikx + 4, + & (L&C,,) = A&k 

(species conservation), (2 .l) 

aF,o aA; 

ax + Ji, + at = 0 

(volume conservation), (2.2) 

2 + R,F,, = 0 

(equation of motion) (2,3) 

for 0 < i Q I, l< k < K, where x is the axial distance along the tube; 
0 G x Q 1, Q 1; fi is the length of the i th tube; 0 6 cik is the concentration of 
the kth solute in the i th tube; 4” is the axial volume flow; D,, is the 
diffusion coefficient of the k th solute in the i th tube; Tk is the transmem- 
brane solute flux; t is time; Ai is the cross sectional area of the tube; s;k is the 
average net rate at which the k th solute is being produced or destroyed by 
physical or chemical reaction; J,, is the transmembrane volume flux (which is 
assumed to be approximately equal to the water flux); P, is the hydrostatic 
pressure; and Ri is the resistance to flow. 

The transmural flux laws are 

J;, = h,, C RT( Cqk - Cik)(rrk + Pi - Pq 
k 1 (2.4) 

and 

4, = hik(C,k - cqk>+ 

(I- ‘Jik)Au(Cik + cqk> aik 

2 + I + b,k/Cik ’ (2.5) 

for 16 i < I, 1 $ k < K, where h,, is the hydraulic permeability coefficient of 
the ith tube for the kth solute; hik is the solute permeability of the i th tube 
for the kth solute; R is the gas constant; T is the absolute temperature; 
subscript q indicates an interstitial variable (for cortex q = c and for medulla 
q = 0); a,, is the Staverman reflection coefficient of the wall of the i th tube 
for the ktb solute. The last term in Equation (2.5) defines the metabohcahy 
driven transport, which is assumed to obey Michaelis-Menten kinetics; ark is 
the maximum rate of transport, and bik is the Michaelis constant. 

Tubes i, 1 d i =$ I, refer to the nephrons and vasculature of the model. In 
general, we assume that s,~ = 0 for all i and k; that Ai = constant for all i; 
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and that Djk = 0 for 16 i G I and all k. The equations of the tubes are 
integrated along each tube in the direction of flow: in the renal tubules from 
Bowman’s capsule (proximal) to bladder (distal), in the capillaries from renal 
artery (proximal) to renal vein (distal). Boundary conditions are specified at 
the proximal end of each tube. Thus the volume and solute inflow at the 
proximal end of each segment must match the outflow of the preceding 
segment. In the medulla x = 0 at the corticomedullary junction and x = 1 at 
the papilla. The sign convention adopted is that flow toward the papilla is 
positive, and flow away from the papilla is negative. Thus, if the proximal 
end of tube j is connected to the distal end of tube i, where & > 0 and 
4” > 0 (that is, volume flow from tube i into tube j is in the direction of 
increasing x), e.g. proximal tubule into descending Henle’s limb, then 

C,k(xO>=cik(lt), lgk<K, (2.6) 

F,“(%) = &(~,)Y (2.7) 

~(xO)=pi(l,). (2.8) 

If the proximal end of tubej is connected to the distal end of tube i so that 
I, = I, is a turning point, e.g. descending limb of Henle to ascending limb of 
Henle, then 

qf#,) =cik(r,)? l<k<K, (2.9) 

4u(lj> = - F;u(li), (2.10) 

P,(fj)=pz(f;). (2.11) 

As observed above, the interstitial space separating the various tubules in 
the medulla is treated as a tube with a closed papillary end. Hence, Equations 
(2.1)-(2.3) apply. The boundary conditions for the interstitium are taken to 
be 

PO(O) = PC, (2.12) 

F,,(l) = FOk (1) = 0, (2.13) 

Jo/s (1) Gk(l) = - 
Jo,(l) ’ 

(2.14) 

for 1 d k d K and FOk = FouCok - DOk a&/ax (where subscript 0 indicates 
a medullary variable and c a cortical one). In addition, water and mass 
conservation require that 

J,,(x) = - %b) (2.15) 
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and 

JOk(X) = - CJ&) (2.16) 

for 0 < x G 1,l d k d K, where the sums are taken over the tubes that extend 
to medullary level x. 

The cortical interstitium is considered to be a well-stirred bath with 
hydrostatic pressure PC and fixed volume V,. Fluid balance in the cortex 
requires that 

J,, = - 7 /d’J,,,( x) dx = - F,,(O)> (2.17) 

and solute balance requires that 

aC,, 
I,‘+- + &k(O)+ Jck = 0, l<k<K (2.18) 

with Jck = -C,/$J,,( x) dx. Again, the sums are 
in the cortical region. 

taken over tubes that reside 

In modeling proximal tubule transport, it is assumed that transmural 
transport is isotonic, i.e., 

J+, = J,C,w, (2.19) 

where CM is the total osmolality of proximal tubular fluid. In our calculations 
on the model, we have assumed various empirical laws for J, in the proximal 
tubule; in particular 

J,=A+ BF,, (2.20) 

where A and B are arbitrary constants. 
Equations (2.19) and (2.20) are not intended as a substitute for a detailed 

model of proximal tubule transport. In the development of the model they 
serve a “dummy” role for which a more sophisticated model of tubule solute 
and water transport can eventually be substituted. 

It will be noted that implicit in the above equations is the assumption that 
at a given position along a capillary or tubule, transmural solute and volume 
exchange are radially symmetric. 

For Bowman’s space we have the equations 

avim 
at = olJ~Ad dx - JLS - G&,,,(O), / (2.21) 
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av, - = 01JG”t4 kc - JB” - FPT,“@)~ at J (2.22) 

where Vs is the volume of Bowman’s space, C,, is the concentration of the 
kth solute in Bowman’s space, JGk is transmural flux from glomerular 
capillary to Bowman’s space, JBk is transmural flux from Bowman’s space to 
cortical interstitium, and FpT, “(0) is volume flow from Bowman’s space into 
the first segment of the proximal tubule. 

In the calculations described in this paper we have made certain simplify- 
ing assumptions: we have assumed the volume of the kidney and the cross 
sectional area of the various tubes to be constant; we have also assumed that 
there are no chemical sources and that diffusion is negligible in tubules. 
Under these assumptions some of the above equations simplify considerably; 
e.g. Eq. (2.1) becomes 

(2.23) 

3. NUMERICAL SOLUTION BY NEWTON’S METHOD 

For solution, the system of differential equations (2.1)-(2.3) is replaced 
with a system of finite difference equations [13,16] as shown below. We select 
a mesh spacing Ax and divide the interval [0, l;] into J, = [,/Ax subintervals 
with 1 a I,, the length of the ith tubule. A time increment At is chosen, so 
that t,=nAt for n=O,l,.... Let &E(j) denote the approximate value of 
F,,(jAx, t,) forj = 0,l ,. . . ,J, and write the other unknowns similarly. Then 
the difference equations used, which are centered in space and backward in 
time, are as follow: 

F;nk(j)-G(j--1) = 
Ax - ;( [G(j)+Jlnk(j-I)] 

+ c:,(j)-c:,-‘(~)+ci”,(~-l)-c:,~‘(j-1) 
At 

G(j)-F,::(_i-1) 
Ax 

= -$[J;(j)+.&;(j-l)], 

P:(j)-P,“(j-1) 

Ax 
= -&[F;::(j)+F,::(j-l)] 

(3.1) 

(3.2) 

(3.3) 

for 0 < i d I, 1 d j d J, 1~ k < K. This scheme is O(Ax*) accurate and has 
been shown to be stable and accurate in approximating solutions of these 
equations [14]. 
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To solve the above system of finite difference equations we denote the 
vector of concentrations, pressures, and volume flows for the n th time step 
by y”, and the system of equations by (p. We then seek a solution y” of the 
system of equations 

where y n-l is known either as a set of initial values or from a previous time 
step. In the steady state y” = y”-‘, so we seek a solution of the system of 
equations 

$(Y”,Y”) = 0, (3.5) 

where by ym we indicate the steady state vector of unknowns. 
The inclusion of several nephrons does not alter the general method of 

solving Equation (3.4) or (3.5). Here we have found a variant of Newton’s 
method [21] most useful. (See the Appendix.) Thus, to solve the transient 
equation (3.4) we can make an initial estimate y,j’ of y”. If the norm of the 
vector +(y;, yfzP1) is less than s ome preset tolerance, we are through. If not, 
we improve our estimate of y n by repeatedly solving the system of linear 
equations 

$(y”, y”-‘)- rAy” = 0, (3.6) 

where r is an approximation to the Jacobian matrix { a+, /ay, } evaluated at 
y”. Computational efficiency demands that any sparseness in I be exploited. 
There are various ways of doing this [13,18,33,34]. The method we have 
found most useful is to partition the unknowns into two groups [13,17,18]. 
The first group consists of the unknowns describing the variables along each 
tube, denoted by y, for the ith tube. The second group consists of the global 
variables, denoted by yG, which include the interstitial variables and the three 
unknowns per nephron that are associated with the exit boundary conditions, 
which are the venous and the bladder pressure; namely, arterial flow, 
filtration fraction, and the partitioning of volume flow between the vas 
rectum and the post glomerular capillaries. Noting that the difference equa- 
tions for the i th tube involve only the unknowns in the i th tube and the 
global variables, we may write the equations for the problem in the form 

(Pi(Y~9Y:-1tYZ!)=0, i=1,2 I, ,..., (3.7) 

(Pc(Y;,Y2n,...,Y~,YGnYyzt-1)=o. (3.8) 

Given an estimate of y:, Equation (3.7) is solved to obtain y,” for each i. 
Knowing y,” for all i, we then solve (3.8) to obtain a new estimate for ~2. This 
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process is repeated until yc is obtained to the desired accuracy. Time is then 
stepped forward and the entire procedure is repeated. Conditions for conver- 
gence are given in [34]. 

4. CONTINUATION METHODS 

Although in general the method described above has worked well for a 
variety of models, the problem has frequently arisen that the domain of 
convergence is small, i.e., the starting vector has to be very close to a solution 
for Newton’s method to converge. If not, the successive iterates may either 
not converge or converge to an inappropriate solution, e.g. a solution with 
negative concentrations or reversed volume flow in one or more of the flow 
tubes of the model. To circumvent these problems we have used one of two 
approaches. The first is to solve the corresponding transient problem [16]. 
Although this may converge to a solution, unless one is interested in the 
transient behavior of the system for the particular problem under consider- 
ation, it requires a large amount of useless computation, An alternative 
approach is to use some continuation method. The general idea in these 
methods as described by Ortega and Rheinboldt [21] is to follow the solution 
path of a sequence of problems that depend on some continuation parameter 
(Y, which may or may not arise naturally from the problem at hand. When 
(Y=(Yo, it defines a problem with a known solution; when cr = ayN, it defines 
the problem for which a solution is sought. This idea has been extended 
recently in a number of papers to include turning points and bifurcations, 
e.g. Chow, Mallet-Pare& and Yorke [3] and Keller [8]. We have used for this 
purpose an algorithm of KubiEek [9] as modified by Bunow and Kemevez [l]. 

To proceed more formally, let y E R” denote the vector of m unknown 
concentrations, pressures, and volume flows arising from a discretization of 
the differential equations and conservation laws described above, and let 
$( y) = 0 be the collection of m discrete equations. Thus, $ is a map from R” 

to R”. For continuation we construct a map p(y, a): Rm+’ + R”, where OL is 
a continuation parameter such that p(y, aN) = @(y), and such that the 
system p( y, ao) = 0 has a known solution yO. The system p( y, a) = 0 consists 
of m equations in m + 1 unknowns; consequently the locus of solutions, 
pP '(O), is in general a curve. Starting on this curve at OL = (Ye and y = yo, and 
numerically calculating points along the curve, one seeks to reach a point on 
the curve with a = OLD, and a corresponding yN that is a solution of the 
system +(y) = 0. 

To define the function p there are many possibilities. The functions we 
have used have been constructed in one of two ways. First, if y0 E R” is a 
prescribed point, set 

(4.1) 
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This simple construction, when successful, enables one to start from any 
point y0 in state space with (Y = 0 and to continue along the curve to a point 
where (Y = 1 and p( y, 1) = $( y). Equation (4.1) has been used by us to obtain 
some of our results [18]. For the second choice of p, recall that the discrete 
equations, represented by the function @, contain many parameters, such as 
permeabilities, pump rates, reflection coefficients, etc. Let us select one of 
these parameters, denote it by (Y, and regard $J = $( y; a) as a function of (Y as 
well as y. Then we define 

P(Ytcr) =$J(v; a) (4.2) 

This choice of p enables us to continue a solution that has previously been 
found, e.g. by the use of Equation 4.1. All the points on the curve are of 
potential interest, provided the solution ( y, ol) stays within reasonable limits, 
e.g. concentrations remain positive. Some of our results have been obtained 
through the use of (4.2). 

Naively, one could trek along the curve by incrementing (Y from (Y, to 
OL r+l = a, + A(T and then using a Newton scheme to converge to a solution, 
but it is usually more efficient to utilize the assumed continuity and differen- 
tiability of p in y and LY to derive the differential equations 

dy ia+r-lg=O, Y(O) = YO? (4.3) 

where 

l<i,j<m. (4.4) 

If r( y( ol), cu) is nonsingular in the interval ((Ye, CX), then the vector of state 
variables y( (u) obtained by the integration of (4.3) is a solution of p(y(cu), cu) 
= 0 in that interval. If, however, r is singular, which occurs at a turning or 
branching point, this integration scheme fails. To overcome this problem we 
use KubiEek’s algorithm [9] as extended by Bunow and Kernevez [l] to 
exchange the role of CY and a dependent variable y, and so obtain a 
nonsingular matrix. 

The central idea of the KubiEek scheme is a parametrization with respect 
to the arc length s of the solution locus. If, following KubiEek, we differenti- 
ate the system of equations p with respect to S, we obtain the system of 
equations 

!!$~l~!%+!gLo, i=1,2,...,m (4.5) 
J 
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(!$)*+ . . . +(!%)2+(!!_F)2=l, (4.6) 

determines the parameter s as arc length along the solution curve in Rm+‘. 
In theory, in the system (4.5) of m linear equations, any one of the m + 1 

unknowns yi,. . , ym, a can be selected as the independent variable and the 
system solved with respect to it if the corresponding matrix is nonsingular. In 
the algorithm, the variable is chosen so as to enhance numerical stability. Let 
yk be the new independent variables, and let the matrix 

’ aP1 dP1 8Pi - . . . apI ~ . . . -’ 
8% dYk-1 aYk+i aYm+i 

r,= ; (4.7) 

8P m . . . . . . 
, aY, dYk-1 yk+l aYm+l , 

be nonsingular, where we have designated y,,,+ i = (Y for consistency. We can 
then solve the system (4.5) to give the equations 

i=1,2 ,..., k-l,k+l,..., m+l. (4.8) 

Substitution of (4.8) into (4.6) gives the result 

. (4.9) 

In (4.9) the sign of dyk/ds is determined so as to preserve the monotonicity 
of yk along the curve. Substitution of dyk/a3 into the equations (4.8) then 
determines the derivatives dy,/dr. The integration of the system of differen- 
tial equations (4.8) and (4.9) is carried out with an explicit Adams-Bashforth 
multistep method with an automatic change in the order of approximation up 
to order 4. The truncation error that develops as the integration proceeds is 
corrected by applying one or more Newton iterations. Further details plus 
FORTRAN code are given by Kubi&k [9]. 

At singular points, we use the criterion due to Crandall and Rabinowitz 
[4], to distinguish turning points from simple bifurcations, where the locus of 
solutions p-‘(O) consists of two curves that cross at a point. It should be 
noted that so far in the kidney models no bifurcations have been found. 
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As shown in previous publications [6,18,32] and in the next section, 
multiple steady states have been found for a number of models of interest. In 
the case of two or more steady states, solution of the corresponding time 
dependent problem has often led to the identification of a solution as being 
unstable. In the case of multiple stable steady states, a substantial difference 
in thermodynamic energy requirements [26,27] would differentiate the states, 
but so far this has not been found. Another means of characterizing solutions 
is to study the shape of the solution surface and the path from one state to 
another on this surface. 

5. CALCULATIONS 

To illustrate our numerical procedures, we give in Figures 3 through 6 the 
results of some calculations on the model described in Section 2. Tables 1 
through 3 show the (normalized) parameter set for the model. Note that there 
is no active salt transport in the inner medulla; all active transport is 
restricted to the thick ascending limb of Henle and to the distal tubule. Thus 
all salt transport out of the thin ascending limb of Henle is by passive 
diffusion. To arrive at a first point of the section of the solution surface 
shown in Figure 3 from the boundary values we used the following proce- 

dure. 

i 

o+ ~- ~~ i__ ~- -pi--_ 
0 2 3 4 5 6 7 0 3 10 

RATIO OF SHORT TO LONG LOOPED NEPHRONS 

FIG. 3. Total urine concentration as a function of the ratio of short to long looped 

nephrons. See text for discussion. 
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1 0 

hCD, v 

FIG. 4. Three dimensional representation of the solution surface of the multinephron 
model showing final urine concentration [URINE] as a function of the hydraulic permeability 
of the collecting duct of the cortical nephron (h cD,v) and of the RATIO of short to long 
looped nephrons. 

(a) Set the maximum rate of transport in each tube to zero and the urea 
permeabilities of the cortical and medullary vasa recta to 10 and 1, respec- 
tively. Let y0 be the boundary values. Then solve the equations (4.1) for 
0 d CY d 1. One step is adequate, so we solve the system of equations (3.7) and 
(3.8) once. This solution has nearly constant concentration profiles, which 
serve as a good initial approximation in the transition to a concentrating 
(diluting) kidney. The arterial volume flow, the filtration fraction, the split 
between the cortical and medullary vasculature, and the hydrostatic pressure 
profiles have now been essentially established; subsequent changes will be 
relatively small. 

(b) Using the solutions of step (a) as the initial data, solve the equations 
(4.2) with the maximum rate of salt transport from the ascending loop of 
Henle for the juxtamedullary nephrons as the continuation parameter. This 
will yield a solution with the desired final value of a = 0.6 in the thick limb. 

(c) Using these data, solve the equations (4.2) now with the maximum 
rate of salt transport from the ascending Henle’s limb of the cortical 
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0.t 5 

hCD.v.2 

FIG. 5. Total concentration of final urine as a function of the hydraulic permeability 
of the collecting duct of the cortical nephrons, with the ratio of short to long nephrons fixed 
at 3.5 to 1. Note the hysteresis type path ABC&4 indicated by the arrows. 

nephrons as the parameter. The path on the solution surface can be con- 
tinued as long as c,~ > 0 for all i and k. 

(d) Fix the maximum rate of salt transport from the distal tubule of the 
long nephrons at the final value, a = 0.3. Using the results of step (c) as the 
initial data, solve the equations (4.1) for 0 6 a Q 1. One step in a is sufficient. 

(e) Fix the maximum rate of salt transport from the distal tubule of the 
short nephrons at the final value, a = 0.45. With the results of step (d) as 
initial data, solve the equations (4.1) for 0 < (r < 1. Once again, one step is 
sufficient. 

(f,) Now multiply the urea permeability of the vasa recta by 10 and repeat 
step (c). 

(g) Repeat step (f) until the problem is solved. 
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1 I I 1 I I / 1 1 1 
0 16 12 8 4 0 4 8 12 16 20 

TIME/lo3 

FIG. 6. Time course of the transitions A + B and C + D shown in Figure 5. Numbers 
in parentheses indicate normalized values of the permeabilities. Note that the transitions 
A + B and C + D are induced by the minute change of 0.003 in the normalized value. 

6. RESULTS 

Having obtained a solution to the model with the desired parameters, one 
may investigate the model as a function of one or more of its parameters by 
solving the equations (4.2). Or one may solve a transient problem using 
Equations (3.7) and (3.8). The result shown in Figures 3 through 6 were 
obtained by a combination of these procedures. Fig : 3 shows the total 
urine concentration for this model wi 1 the bound , conditions shown in 
Table 2 as a function of the ratio of _ __ &al to juxtamedullary nephrons. No 
solution is shown for a ratio less than 2.5 or greater than 9, because the urea 
concentration in some nephron-vascular segments is less than the discreti- 
zation error. Note also that as the ratio increases to a value between 5 and 6 
to 1, the concentration ratio attains a maximum. This is due to the fact that 
as the ratio increases, urea becomes available to drive the passive con- 
centrating mechanism in the inner medulla. As the ratio increases further, the 
non-reabsorbed solute delivered to the collecting ducts acts as an osmotic 
diuretic, and the concentration ratio is reduced [29]. 

Note, also, that around a ratio of 3 to 1 there are multiple solutions to the 
model. A time stability analysis shows that the middle branch of solutions is 
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TABLE 1 

Normalized Parametersa 

Tubeb h, 104R [r ep h, hu 

G 1400 2 0 1 
PGC 300 28.5 0 1 
DVRl 100 28.5 0 1 
DVR2 100 2000 0 1 
CAVR 100 4.9 0 1 
AVRl 100 24.5 0 1 
AVR2 100 2000 0 1 
BC 0 0 l- 
PT I -- 
DHL 50 10 1 - 
AHLl 0 10 1 - 
AHL2 0 10 1 - 
DNl 0.2 6 l- 
DN2 0.2 6 l- 
CD 0.5d 6 l- 

1 1 
4 4 

1000 1000 
1000 1000 

10000 1OtXlO 
1000 1000 
1000 1000 

0 0 

0 0 
.05, .85’ 0 

.05 0 
0 0 
0 0 
0 0, 0.02e 

R, = 10.5 x 1O-4 
R.=0.1~10~~ 
R, = 25Ox1O-4 

QJ,=lxlo-3 
D,,=lx10-3 

B = 0.5 

a = 0.6, 0,’ h = 0.1 
u =1.3, b = 0.1 
(I = 0.3, h=l 
n = 0.45, h=l 

a h,. = hydraulic permeability, 0 = Staverman reflection coefficient for filtered 
solutes, up = reflection coefficient for large solute not filtered, h, = salt permeabil- 
ity, h u = urea permeability, R, = flow resistance afferent to glomerulus, R E = flow 

resistance efferent to glomerulus, R, = resistance to flow in the interstitium. 
I&, = diffusion constant for salt in the interstitium, B = fraction of filtrate 
reabsorbed in the proximal tubule, c1= maximum rate of transport, h = Michaelis 
constant. 
b G = glomerulus, PGC = postglomerular capillary, DVRl = descending vas 
rectum for first (Juxtamedullary) nephrovascular unit, CAVR = cortical ascending 
nephrovascular unit, BC = Bowman’s capsule, PT = proximal tubule, DHL = 
descending loop of Henle’s limb, AHL = ascending loop of Henle’s limb. DN = 
distal nephron, CD = collecting duct. 
‘The first value refers to the outer medulla where 0 6 x 6 0.5; the second refers to 
the inner medulla where 0.6 < x < 1. For 0.5 < x < 0.6 the value varies linearly. 
dThe hydraulic permeability of the second (cortical) nephron population has been 
varied. 
7he first value holds for 0 d x < 0.4,; the second holds for 0.6 d x d 1. For 
0.4 < x < 0.6 the value varies linearly. 

unstable while the upper and lower branches are stable. In addition, the total 
energy requirements of the two stable branches are within 5% of each other: 
well within apparent metabolic limits for the kidney. Thus, none of these 
solutions is excluded by these criteria. 

Figure 4 shows the solution surface for the model when viewed also as a 
function of the collecting duct hydraulic permeability for the cortical popula- 
tion. A cut through the fold in this surface is shown in Figure 5, for a ratio of 
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TABLE 2 

Normalized Boundary Values 

295 

WaCll,,,~ 
KJreal,,titi 
[Large proteins],,,tid 
P arterial 
P WllO”S 
P bladder 

1.0 
0.05 
0.0038 
1.3 x10-2 
1.0x 10-3 
1.44x 10-3 

TABLE 3 

Auxiliary Parameters 

Number of nephron populations 2 
Nephrons per population 1 (long) 1 
Nephrons per population 2 (short) 3a 

“The number of cortical nephrons has been varied. 

3.5 to 1. Once again the middle branch of solutions is time unstable, while 
the upper and lower branches are stable. 

Experimentally the unstable portion indicated by the dotted line A --+ C 

would be unobservable. Instead, a slight increase in collecting duct hydraulic 
permeability at the turning point A would cause a dynamic transition from 
the lower stable solution to the upper stable solution. This is indicated by the 
arrow AB. Similarly, at the turning point C, a slight decrease in hydraulic 
permeability would cause a transition back to the lower stable solution at D. 

Dynamically the system would follow the hysteresis loop ABCDA. The 
dynamic course of the system in the transitions AB and CD is shown in 
Figure 6. 

7. SUMMARY 

By utilizing a combination of Newton and continuation methods, it is 
possible to find solutions of the difference equations describing a multisolute, 
multinephron kidney model. It is also possible to follow these solutions as a 
function of one or more of the parameters describing tubular or vascular 
transport in the model. These same solution techniques should extend to 
models of even greater complexity. Without a path following method, con- 
struction of a connected part of the solution manifold would be very difficult. 

The solutions of this multisolute, multinephron kidney model show the 
same type of behavior found in simpler models 161. Namely, the solution 
manifold is folded into three sheets: an upper and alower stable sheet and a 
middle unstable sheet. At the turning point where the lower stable sheet is 
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connected to the unstable sheet, an arbitrarily small change in the continua- 
tion parameter (e.g. increment in the collecting duct hydraulic permeability) 
can cause a transition from the lower to the upper stable sheet. A finite 
decrement will then return the system to the turning point that connects the 
upper stable sheet to the middle unstable sheet; an arbitrarily small decre- 
ment then returns the system to the lower stable state. 

The occurrence of such multiple solutions and hysteresis type phenomena 
in both prototype [6] and more detailed kidney models provides additional 
support for the speculation that physiologically important correlates may be 
found in the mammalian kidney. 

APPENDIX 

Given an estimate for yc”, the equations (3.7) can be solved iteratively in 
the direction of flow [16]. At each spatial tube position, the algebraic system 
is solved using code generated by the algebraic symbol manipulator MACSYMA 
[12,17], thus avoiding all matrix inversions. Applying the Newton- 
Kantorovich and implicit function theorems [21,34] we solve Equations (3.7) 
and (3.8), with (3.8) solved iteratively as follows: 

$./+l= vc”.’ _ 
ffJ3&cn~‘)~ l=O,l,..., (A.1) 

where T;e,=~~(y,“,‘+Aye,)-~~,(yZ”), i=1,2,...,r; e, is the unit vector 
with 1 in position i, and I- is the number of global variables. For Newton’s 
method H, = AyE, where E is the identity matrix of order r, and Ay is a 

small increment. For a secant method 

H, = ( y;g’ _ y;.‘-l ,..., Y;,‘-h+l - ytf-‘-“, Aye, ,..., Ayer_h), 

h =1,2,..., I< r. (A.2) 

With a rank one update [21], the secant method may be written so that with 
I’, = (q’-’ . . . q’-r) we have 

and 

r ,+t=I;P+(q’--q’-‘)er (A.3) 

where (r = 1 + e;P-‘F,-‘( q’ - q’-r) # 0 and P is a permutation matrix. 
Solution of (3.8) is initiated by solving Equation (A.l) using Newton’s 

method. Subsequently if ]]$~c(yGq’-’ )]]/]]+&y;*‘)]] z 10, we use the previous 
matrices, settingF,-‘= F,z\, H,= H,_,. If4 < Il~~(r,,‘~l)ll/ll~c(y~.‘)ll ~10, 
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we use (A.4) and the secant method described in (A.2) to solve (A.l). The 
process is terminated when the maximum norm Il$G(yg-‘)ll d M for M a 
small constant, e.g. M - (lo-‘). 
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